
FluXQuery: An Optimizing XQuery Processor
for Streaming XML Data

Christoph Koch∗ Stefanie Scherzinger† Nicole Schweikardt\ Bernhard Stegmaier]

∗: Technische Universität Wien, Vienna, Austria, Email: koch@dbai.tuwien.ac.at
†: Technische Universität Wien, Vienna, Austria, Email: scherzinger@wit.tuwien.ac.at

\: Humboldt Universität zu Berlin, Berlin, Germany, Email: schweikardt@informatik.hu-berlin.de
]: Technische Universität München, Munich, Germany, Email: bernhard.stegmaier@in.tum.de

1 Introduction and Motivation

XML has established itself as the ubiquitous format
for data exchange on the Internet. An imminent de-
velopment is that of streams of XML data being ex-
changed and queried. Data management scenarios
where XQuery [11] is evaluated on XML streams are
becoming increasingly important and realistic, e.g. in
e-commerce settings.

Naturally, query engines employed for stream pro-
cessing are main-memory-based, yet contemporary
XQuery engines consume main memory in large mul-
tiples of the actual size of the input documents (cf.
[10, 8]). This excessive need for buffers has proven to
be a serious scalability issue and significant research
challenge [10, 9, 5, 3].

So far, the efficient evaluation of XPath on streams
has been closely investigated to the point where state-
of-the-art techniques use very little main memory
[1, 4, 6, 7]. However, corresponding approaches to
the effective and economical processing of XQuery on
streams are still at a preliminary stage. XQuery, as a
data-transformation query language, is of an entirely
different nature than node-selecting XPath. This con-
stitutes the need to develop sophisticated techniques
for coping with and reducing main memory buffers
during XQuery evaluation.

What is required is a well-principled machinery for
processing XQuery which is parsimonious with re-

∗Work support by project Z29-N04 of the Austrian Science
Fund (FWF).

†This research has been partly funded by the Austrian Fed-
eral Ministry for Education, Science, and Culture, and the Eu-
ropean Social Fund (ESF) under grant 31.963/46-VII/9/2002.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

sources in that it minimizes the amount of buffer-
ing necessary. Any such solution should allow for
both extensibility and the leverage of a large body
of the database community’s related earlier work to
take effect. Under these considerations, such machin-
ery needs to employ an algebraic view of queries and
optimizations.

So far, no principled work exists on algebraic query
optimization for structured data streams (such as
XML, but unlike flat tuple streams, e.g. [2]) which
takes into account the special features of stream pro-
cessing. In particular, we lack an algebra for query-
ing structured data which truly captures the spirit of
stream processing and which prepares the ground for
optimizing query evaluation using schema information.

In this demonstration, we present the FluXQuery
engine as the first optimizing XQuery engine for
streams. Optimization in FluXQuery is based on a
new internal query language called FluX [8] which
slightly extends the main structures of XQuery by a
construct for event-based query processing. By al-
lowing for the conscious use of main memory buffers,
it supports reasoning over the employment of buffers
during query evaluation.

2 The FluX Query Language

We consider the following XQuery Q in a bibliography
domain, as found among the XML Query Use Cases
[12] (XMP Q3):

<results>
{ for $b in $ROOT/bib/book return

<result> { $b/title } { $b/author } </result> }
</results>

This query lists the title(s) and authors of each book
in the bibliography and groups them inside a “result”
element. Note that the XQuery language requires that,
within each book, titles are output before all authors.
Now the DTD

<!ELEMENT bib (book)*>
<!ELEMENT book (title|author)*>

allows each book node to have several title and sev-
eral author children, while imposing no order among
these items.

In the course of evaluating this query, we may out-
put the title children of a book node as soon as they
arrive on the stream, while the output of the author
children must be delayed (using a memory buffer) un-
til we reach the closing tag of the book node. Only
then we may be sure that no further title nodes will
be encountered and we may write the contents of the
buffer containing author nodes to the output and then
empty it. Later on, we may refill it with the author
nodes from the next book.

Consequently, we only need to buffer the author
children of one book node at a time, but not the titles.
Current main memory query engines do not exploit
this fact. Rather, they buffer either the entire book
nodes or, as an optimization [10], all title and all
author nodes of each book. Previous frameworks for
evaluating or optimizing XQuery do not provide any
means of making this seeming subtlety explicit and
reasoning about it.

We introduce the FluX query language together
with its process-stream construct which allows us to
express precisely the mode of query execution just de-
scribed. Given the DTD from above, XQuery Q may
be phrased as a FluX query as follows:

<results>
{ process-stream $ROOT: on bib as $bib return

{ process-stream $bib: on book as $book return
<result>
{ process-stream $book:

on title as $t return {$t};
on-first past(title,author) return
{ for $a in $book/author return {$a} } }

</result> } }
</results>

A process-stream $x expression consists of a
number of handlers which process the children of the
XML tree node bound by variable $x from left to right.
An “on a” handler fires on each child labeled “a” vis-
ited during such a traversal, executing the associated
query expression. In the process-stream $book ex-
pression above, the on-first past(title,author)
handler fires exactly once, namely as soon as the DTD
implies for the first time that no further author or
title node can be encountered among the children
of $book. (As observed above, in the given, very
weak DTD, this is the case only as soon as the last
child of $book has been seen.) In the query associated
with the on-first past(title,author) handler, we
may safely use paths of the form $book/author or
$book/title, because such paths cannot be encoun-
tered anymore. Consequently, we may assume that the
query engine has buffered all matches of that path for
us. It is a feasible task for the query engine to buffer
only those paths that the query actually employs (see
also [10]).

<!ELEMENT bib (book)*>
<!ELEMENT book (title,(author+|editor+),

publisher,price)>

Figure 1: A DTD.

We call a FluX query safe for a given DTD if, in-
formally, it is guaranteed that XQuery subexpressions
(such as the for-loop in the query above) do not refer
to paths that may still be encountered in the stream.
The above FluX query is safe: The for-expression em-
ploys the $book/author path, but is part of an on-first
handler that cannot fire before all author nodes rela-
tive to $book have been seen.

If the path $book/author in the previous FluX
query was replaced by, say, $book/price and the DTD
production for book were

<!ELEMENT book ((title|author)*,price)>

then the FluX query such modified would not be safe:
On the firing of on-first past(title,author), the
buffer for $book/price items would still be empty and
the query result would be incorrect.

Let us now return to XQuery Q. This query can
be processed more efficiently with the DTD shown in
Figure 1: Here, no buffering is required to execute
query Q because the DTD asserts that for each book,
the title occurs strictly before the authors (we call this
an order constraint).

Thus, we may phrase our query in FluX so as to
directly copy titles and authors to the output as they
arrive on the input stream:

<results>
{ process-stream $ROOT: on bib as $bib return

{ process-stream $bib: on book as $book return
<result>
{ process-stream $book:

on title as $t return {$t};
on author as $a return {$a} }

</result> } }
</results>

3 FluXQuery System Architecture

FluXQuery is, to our knowledge, the first XQuery
engine that optimizes query evaluation using schema
constraints derived from DTDs1. Query optimization
is carried out on an algebraic, query-language level
(rather than, say, on some form of derived automata).
Thus, a main strength of FluXQuery is its extensibility
and the ability to benefit from a large body of previous
database research on algebraic query optimization.

The main focus of our efforts was to develop a sys-
tem for automatically rewriting XQueries into FluX
queries and thereby optimizing (reducing) the use of
main memory buffers. We have developed an alge-
bra for optimizing XQuery on streams using a DTD

1Note that the static information required for optimization
could just as well be derived from XML Schema.

Engine

FluX Query

into FluX
Translation

XQuery in NF

Optimization
Algebraic

XQuery in NF

Transformation
into Normal Form

Query Compiler
Buffers
Memory

Query Evaluator
Streamed

(XML)

DTD

XQuery

XSAX

Input
Stream

(XML)

Physical Query Plan

Output Stream

Query
Optimizer

Runtime

Figure 2: The FluXQuery system architecture.

and an efficient algorithm for DTD-aware scheduling
of XQueries as FluX queries [8].

We next discuss the system architecture of FluX-
Query, which consists of the query optimizer and the
runtime engine, as depicted in Figure 2.

3.1 The Query Optimizer

Our query optimizer translates user queries written in
XQuery into optimized FluX queries. The translation
and optimization proceeds in three steps.

First, XQueries are rewritten into a normal form
which allows us to use a simple set of equivalences as
rewrite rules in the subsequent optimization steps.

Next, we statically optimize the normalized
XQuery, exploiting schema information gained from
the DTD. More precisely, we employ algebraic opti-
mizations that are based on cardinality constraints and
language constraints derived from the DTD. As a re-
sult, we may generate FluX queries which can be eval-
uated more efficiently on data streams conforming to
the given schema.

For the intuition behind cardinality constraints,
consider the following query expression with two sub-
sequent for-loops

{ for $x in $book/publisher return α }
{ for $x in $book/publisher return β }

where α and β are arbitrary subexpressions. In
order to perform two iterations over the same set
of publisher nodes, we are automatically forced to
buffer all such nodes.

However, if the schema states that a book node has
at most one publisher among its children, as does
the DTD of Figure 1, then we denote this cardinality
constraint by publisher ∈ ||≤1

book.
Application of the algebraic optimization rule

{ for $x in $r/a return α }
{ for $x in $r/a return β }
{ for $x in $r/a return α β }

(
a ∈ ||≤1

$r

)

merges both for-loops into a single and equivalent for-
loop:

{ for $x in $book/publisher return α β }.
Clearly, the second query is preferable, as it requires
only one loop over publishers instead of two subsequent
iterations. Depending on the nature of subqueries α
and β, we may even be able to evaluate the query
expression completely on-the-fly.

Based on language constraints derived from the
DTD, we can also eliminate unsatisfiable conditional
subexpressions. Again, consider the DTD of Figure 1.
Then we may eliminate an expression

if $book/author = "Goedel"
and $book/editor = "Goedel" then α

where α is an arbitrary subexpression, since the DTD
does not permit book elements with both author and
editor children.

Finally, the pre-optimized XQuery is rewritten into
FluX, with process-stream extensions (as briefly de-
scribed in Section 2) enabling a streaming execution
of the query. The key idea here is to exploit order con-
straints defined by the DTD. For instance, the DTD
of Figure 1 ensures that all title elements precede all
author elements. The rewriting process schedules the
execution of query subexpressions with respect to or-
der constraints and therewith generates FluX queries
with reduced buffer consumption.

In contrast to existing techniques, our algebraic op-
timizations aim at minimizing the size of main memory
buffers, rather than the execution speed.

A main strength of our approach is its extensibility,
and even though our system is currently restricted to
a (powerful) fragment of XQuery with nested loops
and joins, our approach can be generalized to larger
XQuery fragments.

3.2 The Runtime Engine

The second part of our FluXQuery system architecture
is the runtime engine. It evaluates FluX queries as
obtained from XQueries by the query optimizer. The
runtime engine is organized as follows.

The query compiler transforms an optimized FluX
query into a physical query plan. It first computes
the buffer description forest data structure, BDF for
short, which defines those paths of the input docu-
ment which need to be buffered. Based on the BDF,
it schedules query operators, such as the execution of
process-stream expressions, the streamed execution
of for-where-return-statements, and buffer population.
Our approach improves on that of [10] in that it allows
us to avoid the buffering of the data which can be pro-
cessed on the fly.

The resulting query can either be compiled into an
internal representation, which is interpreted during ex-
ecution, or directly into executable JAVA code.

Finally, the physical query plan is executed by the
streamed query evaluator. The latter uses our vali-
dating SAX parser, XSAX , which is an extension of
a standard SAX parser that in addition produces on-
first events in addition to customary SAX-events (such
as on-begin-element).

Basically, the XSAX parser works as follows. We
first register the DTD and all on-first event handlers
of the input query with the XSAX parser. Based
on this information, the XSAX parser builds a fi-
nite state automaton and lookup-tables for validat-
ing the input and generating on-first events. While
reading the input XML stream, the state of this au-
tomaton is checked and the on-first events are properly
inserted among the generated stream of conventional
SAX events. The streamed query evaluator processes
these events and delivers its output in turn as an XML
stream.

4 Conclusions

FluXQuery currently supports a fairly powerful
XQuery fragment with arbitrarily nested for-loops and
joins, but does not yet cover aggregation.

The FluX query language, an algorithm for rewrit-
ing XQuery into FluX and thereby scheduling event
processors using the DTD, as well as buffer manage-
ment, are described in detail in [8]. There, the ef-
ficiency of our system is also benchmarked against
two other XQuery engines. Our experiments show
that FluXQuery consumes both far less memory and
runtime than other XQuery systems. The difference
is particularly clear for main memory consumption,
which is of great importance in stream processing and
vital to scalability.

Our algebraic optimization techniques will be de-
scribed in detail in a forthcoming paper.

References

[1] M. Altinel and M. Franklin. “Efficient Filtering
of XML Documents for Selective Dissemination of
Information”. In Proc. VLDB 2000, pages 53–64,
Cairo, Egypt, 2000.

[2] A. Arasu, B. Babcock, S. Babu, M. Datar,
K. Ito, I. Nishizawa, J. Rosenstein, and J. Widom.
“STREAM: The Stanford Stream Data Man-
ager”. In Proc. SIGMOD 2003, page 665, 2003.

[3] P. Buneman, M. Grohe, and C. Koch. “Path
Queries on Compressed XML”. In Proc. VLDB
2003, pages 141–152, 2003.

[4] C. Y. Chan, P. Felber, M. N. Garofalakis, and
R. Rastogi. “Efficient Filtering of XML Docu-
ments with XPath Expressions”. In Proc. ICDE
2002, San Jose, California, USA, February 26–
March 1 2002.

[5] L. Fegaras, D. Levine, S. Bose, and V. Chaluvadi.
“Query Processing of Streamed XML Data”. In
Proc. CIKM 2002, pages 126–133, 2002.

[6] T. J. Green, G. Miklau, M. Onizuka, and D. Su-
ciu. “Processing XML Streams with Determinis-
tic Automata”. In Proc. ICDT’03, 2003.

[7] A. K. Gupta and D. Suciu. “Stream Processing
of XPath Queries with Predicates”. In SIGMOD
Conference, pages 419–430, 2003.

[8] C. Koch, S. Scherzinger, N. Schweikardt, and
B. Stegmaier. “Schema-based Scheduling of Event
Processors and Buffer Minimization for Queries
on Structured Data Streams”. In Proc. VLDB
2004, 2004.

[9] B. Ludäscher, P. Mukhopadhyay, and Y. Pa-
pakonstantinou. “A Transducer-Based XML
Query Processor”. In Proc. VLDB 2002, pages
227–238, 2002.

[10] A. Marian and J. Siméon. “Projecting XML Doc-
uments”. In Proc. VLDB 2003, pages 213–224,
2003.

[11] World Wide Web Consortium. “XQuery 1.0
and XPath 2.0 Formal Semantics. W3C Working
Draft (Aug. 16th 2002), 2002.
http://www.w3.org/TR/query-algebra/.

[12] “XML Query Use Cases. W3C Working Draft 02
May 2003”, 2003.
http://www.w3.org/TR/xmlquery-use-cases/.

